
PBR	Basics	
A	ten-minute	Guide	for	Qt	developers	

Dr	Sean	Harmer	
Managing	Director	–	UK		
The	KDAB	Group	
	
April	2016	

(Image	courtesy	of	NVIDIA)	



	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 2	

Physically	based	rendering	(PBR)	emulates	
the	interaction	between	light	and	materials	
and	is	a	trend	in	real-time	rendering.	Here’s	
a	ten-minute	guide	to	the	essentials.	

1

PBR	Basics	for	Qt	Developers	
	

What	exactly	is	physically	based	rendering	(PBR)?	It	is	the	latest	in	a	never-
ending	pursuit	of	more	realistic	computer	generated	imagery,	a	system	that	
replaces	common	shortcuts	for	rendering	surfaces	with	methodologies	rooted	in	
the	physical	world.	Fast	becoming	a	standard	in	game	development	circles,	PBR	
is	a	general	set	of	principles	rather	than	a	hard-and-fast	standard,	meaning	that	
you	can	find	multiple	interpretations	that	all	rightfully	call	themselves	PBR.	The	
primary	defining	feature	of	any	PBR	system	though,	is	that	it	more	accurately	
simulates	the	behavior	of	light	through	the	methodical	application	of	reflection,	
scattering,	and	absorption	physics.		

Other	than	enhanced	realism,	one	of	the	biggest	benefits	of	a	PBR	approach	is	
that	it	is	much	more	foolproof.	PBR	renders	materials	that	look	correct	
regardless	of	the	lighting	environment.	Artists	no	longer	need	to	tinker	with	
esoteric	parameters	of	their	objects	to	get	things	to	“look	right”	because	the	
shader	properly	renders	an	object’s	look	based	on	its	properties	and	the	given	
lighting.	What’s	more,	PBR’s	inherent	ability	to	create	great-looking	graphics	
with	consistently	defined	properties	makes	it	easier	to	collaborate	and	share	
object	libraries.	

The	words	“physical”	and	“physics”	both	derive	from	the	Latin	word	for	nature,	
so	it’s	not	a	coincidence	that	physical	rendering	that	mimics	nature	requires	
physics.	But	aren’t	we	already	emulating	physics	in	how	we	mimic	the	path	of	
light	in	existing	non-PBR	rendering	models?	Yes	and	no.	Let’s	take	a	look	at	the	
main	properties	that	distinguish	PBR	from	earlier	models.	

	

Material	

Representing	an	object’s	texture	with	physically	derived	properties	is	probably	
the	most	distinguishing	feature	of	a	PBR	system.	While	there	may	be	differences	
in	the	properties	of	any	given	implementation,	these	three	fundamental	
attributes	are	common	to	nearly	all.	

	

KDAB	demo	of	Dodge	Viper	
using	PBR	



	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 3	

PBR	differs	from	older	rendering	models	
in	that	the	GPU	shaders	can	create	
realistic	rendering	without	needing	
specialized	object	hints	or	lighting	tricks.	

2

Albedo	

The	albedo	of	an	object	is	the	color	of	its	diffuse	reflected	light.	Think	of	this	
as	the	color	of	the	object	under	perfectly	even,	omni-directional,	balanced	
white	light.	You	might	be	thinking	albedo	seems	like	just	a	more	scientific	
name	for	“diffuse	color”—what’s	the	difference?	PBR	differs	from	older	
rendering	models	in	that	shader	computations	take	the	place	of	texture	
hints	(in	legacy	OpenGL)	or	non-energy	conserving	shader	formulations.	
PBR	does	not	need	to	tweak	colors	or	include	directional	light	highlights	to	
ensure	the	object	displays	properly	under	the	given	lighting	conditions.	You	
no	longer	need	extra	“artist	supplied”	information	to	trick	the	rendering	
engine	into	displaying	as	desired.	With	PBR,	you	represent	an	object	with	
real	physical	characteristics	and	a	PBR	texture	map	of	an	object	contains	its	
flat,	unaltered	color.	

	

Conductivity	

We’re	not	used	to	thinking	about	the	conductivity	of	a	surface	to	
understand	how	to	render	it.	But	remembering	that	light	is	actually	an	
electromagnetic	phenomenon,	it	makes	sense	that	a	PBR	system	needs	to	
know	an	object’s	conductivity	to	predict	how	light	will	interact	with	its	
surface.	A	measure	of	conductivity—often	simplified	as	“metalness”—
specifies	how	strongly	light	will	reflect,	as	well	as	whether	reflected	light	
will	shift	towards	a	new	hue.	Insulating	surfaces	(like	rubber,	paint,	or	
wood)	absorb	most	light	hitting	the	surface,	while	conducting	surfaces	
(most	metals)	reflect	most	light	and	potentially	color	it.	Some	PBR	systems	
are	able	to	also	specify	materials	like	rubies,	emeralds,	or	sapphires	as	semi-
conductors—something	between	a	conductor	and	an	insulator—allowing	
partial	reflection,	absorption,	and	coloration	of	light.		

A	conductivity	map	allows	the	“metalness”	property	to	vary	across	an	
object.	Conductivity	textures	can	realistically	depict	painted	metal	by	
indicating	where	the	surface	is	painted	(and	diffusely	reflecting	light),	and	
where	the	underlying	metal	is	visible	through	wear	or	scratches	(and	
reflecting	light	in	a	specular	manner).		

	

“By	modeling	
physical	phenomena	

rather	than	
approximating	

observation,	we	can	
achieve	more	

mathematically	
stable	and	

photorealistic	visual	
fidelity”	

	
Koray	Hagen,	Sony	

	



	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 4	

One	way	in	which	the	microfacet	theory	
comes	into	PBR	systems	is	in	the	selection	
of	the	shader	algorithms	used	to	calculate	
the	specular	reflection.	

3

Microfacets	

Understanding	a	material’s	appearance	requires	an	understanding	of	the	
microscopic	properties	of	the	surface.	If	the	surface	is	broken	into	many	
tiny	randomly	oriented	facets,	it	will	spread	reflected	light	across	a	wide	
range	of	angles,	blurring	reflections	and	spreading	out	highlights.	If	the	
surface	is	very	smooth,	reflected	light	will	bounce	back	in	a	precise	angle	
from	the	surface,	resulting	in	sharp	reflections	and	narrow	highlights.	Of	
course	it’s	completely	impractical	to	specify	microscopic	surface	
characteristics	with	a	tremendous	array	of	polygons,	so	generally	a	
“roughness”	map	is	used	to	specify	the	microscopic	nature	of	a	surface.	

A	roughness	map	may	also	be	paired	with	a	cavity	map,	which	captures	
features	that	are	larger	than	the	surface	roughness	but	also	much	smaller	
than	the	object’s	polygon	mesh.	Those	small	surface	features	have	the	
property	of	trapping	and	absorbing	light.	A	cavity	map	allows	the	renderer	
to	more	accurately	represent	features	like	pits,	nicks,	grooves	or	other	
features	that	are	impractical	to	represent	in	triangles.	In	practice,	this	is	
often	represented	by	the	combination	of	a	height	map	and	a	normal	map,	
and	used	in	conjunction	with	one	of	a	number	of	possible	occlusion	
mapping	algorithms.	

In	addition	to	the	roughness	map,	the	other	way	in	which	the	microfacet	
theory	comes	into	PBR	systems	is	in	the	selection	of	the	shader	algorithms	
used	to	calculate	the	specular	reflection.	Many	such	algorithms	exist;	each	
specialized	to	best	handle	certain	lighting	conditions	or	materials.	Using	
different	algorithms	allows	the	number	and	orientation	of	a	surface’s	
microfacets	to	react	differently	to	light	depending	on	an	object’s	desired	
appearance.	For	example,	the	GGX	distribution	gives	a	wider	fall	off	for	the	
specular	highlights	than	the	traditional	Blinn-Phong	model,	providing	a	
better-looking	appearance	for	real	world	surfaces.	There	are	also	shaders	
tailored	for	specific	use	cases,	such	as	handling	rough	matte	surfaces	like	
clay	pots	or	dealing	with	transparent	materials.	Generally	you’ll	want	to	
minimize	the	total	number	of	shaders	employed,	as	each	shader	change	
requires	a	costly	context	shift	on	the	GPU.	

Now	that	we’re	done	talking	about	materials,	what	other	features	
distinguish	a	physically	based	renderer?	There	are	two	main	behaviors	of	
light	that	change	within	a	PBR	system.	

	

Microfacets	control	
reflections	from	roughness	

of	the	carpet	to	smoothness	
of	the	chairs	

	
	(Image	courtesy	of	NVIDIA)	



	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 5	

PBR’s	emulation	of	the	Fresnel	effect	
shows	light	at	a	very	shallow	angle	creating	
bright	reflections	for	“shiny”	objects	…		
and	for	flat	and	matte	objects.		

4

Conservation	of	energy	

This	isn’t	just	a	law	from	your	undergraduate	physics	class.	It’s	an	
observation	that	the	amount	of	light	an	object	reflects	can	never	be	more	
than	the	amount	of	light	hitting	that	object.	Although	this	might	seem	
obvious,	earlier	models	to	emulate	specular	highlights	(such	as	the	Blinn-
Phong	reflection	model)	often	resulted	in	producing	more	light	than	what	
actually	hit	the	surface.	While	it	mostly	works,	it	also	doesn’t	look	natural.		

Obeying	conservation	of	energy	in	PBR	means	that	the	amount	of	light	
reflected	by	diffuse	and	specular	sources	should	never	exceed	100%.	(Of	
course	this	rule	doesn’t	apply	if	the	object	rendered	is	a	light	emitter,	like	a	
neon	sign	or	fluorescent	tube.)	Conservation	of	energy	and	surface	
roughness	combine	to	control	an	object’s	highlights	and	overall	appearance.	
An	object	with	a	rough	surface	reflects	more	diffuse	light,	while	a	smooth	
surface	reflects	more	highlights.	But	due	to	conservation	of	energy,	
switching	an	object’s	texture	between	rough	and	smooth	does	not	change	
the	total	amount	of	light	reflected.	

	

Fresnel	effect	

Have	you	noticed	that	if	you	look	straight	down	into	a	pool	you	can	see	the	
bottom	but	if	you	look	across	its	surface	you’ll	see	a	reflection	of	the	sky?	
That	is	due	to	the	Fresnel	effect,	which	in	plain	English	means	the	more	
glancing	an	angle	of	light	that	hits	a	surface,	the	more	that	surface	will	
reflect	the	light.	The	critical	thing	that	makes	PBR	different	from	other	
rendering	methods	is	an	acknowledgement	that	the	Fresnel	effect	doesn’t	
just	apply	to	“shiny”	objects	(like	the	surface	of	a	pool),	it	applies	to	every	
object.	Yes,	even	seemingly	drab	surfaces	like	bricks	and	cardboard	exhibit	
the	Fresnel	effect.	

Simulating	the	Fresnel	effect	with	precision	requires	a	considerable	amount	
of	complicated	math,	a	significant	speed	concern	in	a	real-time	rendering	
system.	In	PBR	systems	that	need	rapid	rendering,	a	rough	and	ready	
approximation	for	the	Fresnel	effect	computes	an	interpolated	reflected	
color	using	the	angle	of	light,	the	conductor	color,	and	the	metalness	map.	

	

“Physically	based	
rendering	is	great	

because	it	simplifies	
the	asset	creation	

process	and		
makes	it	difficult	for	

artists	to	create	
unrealistic	results”	

	
Martin	Thomas,		

Extremeistan		



	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 6	

Shiny	slate	tiles	show	an	
instance	of	the	Fresnel	effect		

	
(Image	courtesy	of	NVIDIA)	

Getting	graphics	to	display	with	a	PBR	
rendering	model	comes	down	to	using	a	
PBR-aware	engine	and	providing	material	
information	in	your	textures.	

5

Using	PBR		

Getting	your	graphics	to	display	with	a	PBR	rendering	model	comes	down	to	
using	a	PBR-aware	engine	and	providing	appropriate	material	information	in	
your	textures.	Many	existing	rendering	engines	(Unreal	Engine	4,	Unity	5,	
Frostbite)	and	tools	(Marmoset,	Sketchfab)	have	already	made	the	move	to	
PBR	for	you.	However,	if	you	aren’t	using	an	existing	engine,	you’ll	need	to	
implement	the	necessary	physics	equations	in	your	shader.	

If	you’re	using	Qt,	PBR	can	be	implemented	with	custom	shaders	in	Qt3D.	
For	an	example	of	this	in	action,	see	our	Dodge	Viper	demo.	This	demo	
shows	a	mix	of	standard	Qt	controls	mixed	with	PBR-based	3D	rendering,	
and	is	made	possible	through	a	new	PBR	layer	that	KDAB	is	developing	on	
top	of	Qt	3D.	We	are	upstreaming	this	Qt	PBR	component	into	Qt	
Automotive	as	a	first	test	deployment	of	the	technology.	The	eventual	goal	
is	to	make	it	part	of	a	future	Qt	3D	release,	making	Qt	just	as	capable	and	
current	as	the	rest	of	the	graphics	world.	

	

		

	

	

	

	

	

	

	

https://www.youtube.com/watch?v=zCBESbHSR1k


	KDAB	—	the	Qt,	OpenGL	and	C++	experts	 7	

	

6

	

About	the	KDAB	Group	

The	KDAB	Group	is	the	world's	leading	software	consultancy	for	architecture,	
development	and	design	of	Qt,	C++	and	OpenGL	applications	across	desktop,	
embedded	and	mobile	platforms.	KDAB	is	the	biggest	independent	
contributor	to	Qt.	Our	experts	build	run-times,	mix	native	and	web	
technologies,	solve	hardware	stack	performance	issues	and	porting	problems	
for	hundreds	of	customers,	many	among	the	Fortune	500.	KDAB’s	tools	and	
extensive	experience	in	creating,	debugging,	profiling	and	porting	complex	
applications	help	developers	worldwide	to	deliver	successful	projects.	
KDAB’s	trainers,	all	full-time	developers,	provide	market	leading,	hands-on,	
training	for	Qt,	OpenGL	and	modern	C++	in	multiple	languages.	Founded	in	
1999,	KDAB	has	offices	throughout	North	America	and	Europe.		

www.kdab.com	

©	2016	the	KDAB	Group.	KDAB	is	a	registered	trademark	of	the	KDAB	Group.	
All	other	trademarks	belong	to	their	respective	owners.	

	

http://www.kdab.com/

